Further Syntheses of Quinquevalent Spirophosphoranes by using N-Chlorodi-isopropylamine

By Santokh Singh, Mary Swindles, Stuart Trippett,* and Robin E. L. Waddling, Department of Chemistry, The University, Leicester LE1 7RH

Abstract

Spirophosphoranes have been obtained from cyclic tervalent phosphorus compounds and 1,2-difunctional comcompounds $\mathrm{HX}(\mathrm{C})_{2} \mathrm{YH}(\mathrm{X}, \mathrm{Y}=\mathrm{O}, \mathrm{NR}$, or S$)$, benzohydroxamic acid, benzohydrazide, or benzamidoxime in the presence of N -chlorodi-isopropylamine.

We previously showed ${ }^{1}$ that quinquevalent phosphoranes are obtained in good yield from a wide range of tervalent phosphorus compounds and 1,2-diols or 1,2-dihydroxybenzenes ($\mathbf{l} ; \mathrm{X}, \mathrm{Y}=\mathrm{O}$) in the presence of N-chlorodiisopropylamine.

(1)

By using prolonged reaction times we have now extended the synthesis to include the thiols and amines ($1 ; \mathrm{X}, \mathrm{Y}=\mathrm{O}, \mathrm{NR}$, or S) listed in the Table, benzamidoxime, and, in their enol forms, benzohydroxamic acid, and benzohydrazide. The syntheses are exemplified using the tervalent species (2; $\mathrm{X}=\mathrm{OPh}$ or NMe_{2}) or $\left(3 ; \mathrm{X}=\mathrm{OMe}, \mathrm{OPh}, \mathrm{Ph}\right.$, or $\left.\mathrm{NMe}_{2}\right)$.

Most of the resulting phosphoranes would, in principle, be accessible by incorporating the sulphur and/or nitrogen(s) initially in a ring containing tervalent phosphorus and then adding a second ring using N-chlorodi-isopropylamine, or via for example exchange reactions. ${ }^{2}$ However the method reported here is, in general, the

[^0]most convenient. The spirophosphoranes derived from o-aminophenol showed no evidence of the presence of the isomeric iminophosphoranes, ${ }^{3}$ presumably because of the relief of ring-strain in the five-co-ordinate form. Spirophosphoranes could not be isolated from reactions using o-phenylenediamine or 2-hydroxyethanethiol although there was ${ }^{31} \mathrm{P}$ n.m.r. evidence for their formation.

Phosphoranes containing 3,1,2-thiazaphospholidine rings have previously been obtained by the deoxygenation with cyclic phosphites of aryl 2-nitrophenyl sulphides. ${ }^{4} \quad P$-H spirophosphoranes derived from benzamidoximes, ${ }^{5}$ benzohydroxamic acid, ${ }^{6}$ and benzohydrazide ${ }^{7}$ are well known, and spirophosphoranes containing two $1,3,4,2$-oxadiazaphospholidine rings have recently been obtained from acyl hydrazides and phosphonic dichlorides. ${ }^{8}$

EXPERIMENTAL

General Procedure.-N-Chlorodi-isopropylamine (5 mmol) in ether (20 ml) was slowly added to a stirred solution of the tervalent phosphorus compound (5 mmol) and the $1,2-$ difunctional species (5 mmol) in ether (20 ml) at $-40^{\circ} \mathrm{C}$ and the mixture set aside at room temperature until ${ }^{31} \mathrm{P}$ n.m.r. spectra showed the reaction to be complete (1-24 days). The resulting suspension was filtered and the filtrate evaporated to dryness. The phosphoranes were then crystallised from ethyl acetate or dichloromethane by the addition of light petroleum although in some cases rapid chromatography on a short column of alumina was necessary in order to remove coloured impurities.

We thank the S.R.C. for support.
[7/2210 Received, 2nd December, 1977]

[^1]Spirophosphoranes prepared by using N-chlorodi-isopropylamine

[^2]
[^0]: ${ }^{1}$ S. A. Bone and S. Trippett, Tetrahedron Letters, 1975, 1583 ; S. Antczak, S. A. Bone, J. Brierley, and S. Trippett, J.C.S. Perkin I, 1977, 278.
 ${ }^{2}$ e.g. D. Bernard and R. Burgada, Phosphorus, 1975, 5, 285.
 ${ }^{3}$ H. B. Stegmann, G. Bauer, E. Breitmaier, E. Herrmann, and K. Scheffler, Phosphorus, 1975, 5, 207.

 4 J. I. G. Cadogan, R. O. Gould, and N. J. Tweddle, J.C.S. Chem. Comm., 1975, 773.

[^1]: ${ }^{5}$ L. Lopez and J. Barrans, Compt. rend., 1971, 273C, 1540.
 ${ }_{6}$ A. Munoz, M. Koenig, R. Wolf, and F. Mathis, Compt. rend., 1973, 277C, 121.
 7 A. Schmidpeter and J. Luber, Angew. Chem. Internat. Edn., 1972, 11, 306.
 ${ }^{8}$ A. Schmidpeter and J. Luber, Chem. Ber., 1977, 110, 1124.

[^2]: a All phosphoranes showed the molecular ion and the expected fragmentation pattern in their mass spectra. ${ }^{b}{ }^{\text {In }} \mathrm{CDCl}_{3}$. Positive values are to high field of external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. ${ }^{0}$ Found (required). ${ }^{4}{ }^{3} J_{\mathrm{PH}} 12 \mathrm{~Hz}$. ${ }^{3}{ }^{3} J_{\mathrm{PH}} 14 \mathrm{~Hz}$. ${ }^{f}{ }^{3} J_{\mathrm{PH}}$ (NMe) 7 and (NMe_{2})
 $16 \mathrm{~Hz} .{ }^{m}{ }^{2} J_{\mathrm{PH}} 19.5 \mathrm{~Hz} .{ }^{n}{ }^{2} J_{\mathrm{PH}} 18,{ }^{3} J_{\mathrm{PH}}\left(\mathrm{NMe}_{2}\right) 11 \mathrm{~Hz}$. ${ }^{0}{ }^{2} J_{\mathrm{PH}} 18 \mathrm{~Hz}$. ${ }^{2}{ }^{2} J_{\mathrm{PH}} 38 \mathrm{~Hz}$.

